Vitamin D and Oral Mucositis in Autologous Hematopoietic Stem Cell Transplantation: A Cross-Sectional Observation

Kosar Raoufinejad¹, Shahrzad Pezeshki², Bahram Chahardouli³, Molouk Hadjibabaie¹,⁴*, Zahra Jahangard-Rafsanjani¹, Kheirollah Gholami¹,⁴, Mehdi Rajabi²,⁵, Mohammad Vaezi³

¹ Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
² Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Islamic Azad University of Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
³ Hematology-Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
⁴ Research Center for Rational Use of Drugs, Tehran University of Medical Sciences, Tehran, Iran
⁵ Department of Clinical Pharmacy, University Hospitals of North Midlands, Stoke-on-Trent, Staffordshire, UK

Received: 2019-06-11, Revised: 2019-07-24, Accepted: 2019-07-27, Published: 2019-08-01

Keywords: Vitamin D; Mucositis; Hematopoietic Stem Cell Transplantation

ABSTRACT

Background: One of the most frequent complications of high-dose chemotherapy regimen before hematopoietic stem cell transplantation (HSCT) is oral mucositis (OM). Vitamin D (VD) has well-known immunoregulatory, anti-inflammatory, and antioxidant properties. This study aimed to evaluate the association of pre-HSCT VD level with OM as well as neutrophil and platelet engraftments in patients with multiple myeloma, Hodgkin’s and non-Hodgkin’s lymphoma after autologous HSCT.

Methods: A sample of 71 patients was enrolled after obtaining informed consent. Serum samples were collected in the morning prior to the administration of conditioning regimen to measure the 25-hydroxy vitamin D (25-OH-D) level. OM was examined daily during hospital stay. The World Health Organization scale was used for scoring the OM. Absolute neutrophil count and platelet count were determined daily from transplantation until engraftment.

Results: Patients were 18 to 65 years old. Mean length of hospital stay was 15.8±5.7 days. OM was detected in 44/71 (62.0%) of patients. Mean time to the engraftment of neutrophils and platelets was 11.8±4.0 and 17.2±7.3 days, respectively. Mean level of 25-OH-D was 17.5±14.0 ng/ml. VD deficiency (<20 ng/ml) was diagnosed in 51/71 (71.8%) of patients. No association between the 25-OH-D level and incidence of OM (P=0.69) or OM grade 3-4 (P=0.46) was found. No significant correlations were detected between the 25-OH-D level and engraftment time of neutrophils (P=0.46) or platelets (P=0.17).

Conclusions: The prevalence of VD deficiency was high among the adult HSCT patients at the time of transplantation. However, no association was found between the pre-HSCT VD level and OM or engraftment time.

J Pharm Care 2019; 7(1-2): ?

Introduction

Oral mucositis (OM) is one of the most frequent adverse effects of conditioning regimen prior to hematopoietic stem cell transplantation (HSCT) in about 75% of patients (1). OM is associated with severe pain, dysphasia, and additional narcotic analgesics use. It can also increase the risk of bleeding and life-threatening infections, prolong

*Corresponding Author: Dr Molouk Hadjibabaie
Address: Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, PO Box 14155/6451, 16 Azar Ave., Inqelab Sq., Tehran, Iran. Tel: +982166954709, Fax: +98216643863, E-mail: hajibaba@tums.ac.ir
the hospital stay, and raise the treatment costs and mortality (2). Chemotherapy agents form free radicals and damage the DNA, resulting in an inflammatory cascade in the first phase of OM. Then pro-inflammatory cytokines such as TNF-α, IL-1b, and IL-6 are generated. They damage the mucosal tissue and subsequently some lesions are formed (3).

Vitamin D (VD) plays main immunoregulatory roles through its receptors in various myeloid and lymphoid cells. VD can reduce the release of TNF-α and increase the synthesis of IL-10 (anti-inflammatory cytokine) (4). Moreover, VD induces the synthesis of antimicrobial peptides, such as defensin and cathelicidin, in immune cells (5). Animal studies show the anti-inflammatory effects of VD through modification of some cytokines, such as IL-1b, IL-10, and IL-17 (6).

Despite all the known benefits, VD level is suboptimal in approximately 70% to 80% of patients undergoing HSCT. The prevalence of low VD even rises after transplantation despite supplementation (7-12).

The optimal serum level of VD has not been precisely defined due to uncertainties in the relationship between VD levels and various clinical endpoints. Circulating 25-hydroxy vitamin D (25-OH-D) is the most reliable marker of the VD status reflecting the overall VD taken from the sun exposure and diet (13). The 25-OH-D level ≥20 ng/ml is a sufficient level of VD to cover the needs of 97.5% of the population (14).

Previous data suggest that VD might prevent graft-versus-host disease by immature dendritic cell populations that bias toward tolerizing rather than stimulatory T-cell populations (15). A relationship between low VD level and development of OM has been previously reported (16-18). However, the role of VD in the context of mucositis after HSCT remains unclear. Therefore, the objective of this study was to evaluate whether VD level at the time of HSCT was associated with OM and engraftment time of neutrophils and platelets.

Methods

A cross-sectional study was conducted from May to December 2015 at the adult bone marrow transplant wards of Shariati Hospital. Protocol and consent form of the study were approved by the ethics committee of Tehran University of Medical Sciences and the ethics code of IR.TUMS.REC.1394.1368 was assigned. Multiple myeloma, Hodgkin’s and non-Hodgkin’s lymphoma patients waiting for autologous peripheral blood HSCT were included if declared consent.

Filgrastim 10 µg/kg/d was administered subcutaneously as the mobilizing agent from day -7 to -3. Peripheral blood progenitor cells were harvested between days -2 and -1 if the circulating CD34+ cell count was >20 cell/µl. The minimum acceptable count of CD34+ was 2×10⁶ cell/kg of the patient body weight obtained by one or two apheresis collections.

Hodgkin’s and non-Hodgkin’s lymphoma patients received conditioning regimen of etoposide (600 mg/m²), cytarabine (1200 mg/m²), carboplatin (1500 mg/m²), and melphalan (140 mg/m²) on days -2 to -1. Multiple myeloma patients received the melphalan (200 mg/m²) conditioning regimen on day -1. Autologous peripheral blood HSCT was performed on day zero.

All the post-HSCT patients received subcutaneous filgrastim (5-10 µg/kg/day based on the neutrophil response), oral fluconazole (100 mg q.12.h), oral acyclovir (200 mg q.8.h), and oral nystatin (20 drops q.3.h) during hospitalization. Transfusion of packed-cell was indicated if hemoglobin concentration was <7 g/dl. Platelet was transfused if its count was <10000/µl or higher values in the case of clinical bleeding.

In order to measure the 25-OH-D, blood specimens (5 ml) were obtained in the morning prior to the administration of conditioning regimen. They were centrifuged for five minutes to isolate serum. The sera were cryostored in microtubes at -80°C until analysis.

Enzyme immunoassay was performed for the quantitative determination of 25-OH-D by the kits of Immunodiagnostic Systems Ltd., Frankfurt am Main, Germany. Based on the level of 25-OH-D, VD status was categorized as deficiency (<20 ng/ml), insufficiency (20-29.9 ng/ml), and sufficiency (30-100 ng/ml) (19).

A thorough examination for OM was completed daily during hospital stay with the help of mouth mirrors and a high-power lamp. The WHO scale was used for scoring the OM from grade zero to four (20). The pre-HSCT 25-OH-D level association with OM incidence, duration, and severity was the primary outcome.

Absolute neutrophil count and platelet count were determined daily from day of transplantation until engraftment by the automated hematology analyzer (Sysmex KX-21N, Sysmex Corp., Kobe, Japan) and biological microscope (Olympus® CX31, Olympus Corp., Tokyo, Japan). First of three consecutive days from day of transplantation to reach the neutrophils ≥0.5×10⁹/µl and platelets ≥20×10³/µl (without platelet transfusion) were defined as the engraftment days of neutrophils and platelets, respectively. The pre-HSCT 25-OH-D level association with time to recovery of neutrophils and platelets was the secondary outcome.

A sample size of 71 was considered for a power of 90% (α=0.05) and to overcome the probable dropouts, using data from a previous relevant study (17). As the level of 25-OH-D was <30 ng/ml in the majority of patients, the 25-OH-D level ≥20 ng/ml was considered the sufficient level for grouping analyses (14).

Mean ± standard deviation (SD) or standard error (SE) was reported for continuous data. Frequency and proportions were reported for categorical data. Comparison of continuous and categorical data between
study groups were performed by Mann–Whitney U test and chi-square test, respectively. The Cox-regression analysis, Spearman’s Rho test, and logistic regressions were used to evaluate the association of pre-HSCT 25-OH-D level with outcomes. All statistical analyses were performed using SPSS software (version 24 for Windows, IBM Corp., Armonk, NY, USA) and statistical significance was set at P<0.05.

Results
Flow diagram of the participants is demonstrated in Figure 1. Baseline characteristics of participants (n=71) are summarized in Table 1. Patients were between 18 and 65 years old with the mean ± SD of 46.8±13.4 years. Mean ± SD length of hospital stay was 15.8±5.7 days (from transplantation to discharge).

OM was detected in 44/71 (62.0%) of all patients. While 9/71 (12.7%) were diagnosed with OM grade 3-4. Mean ± SD time to the engraftment of neutrophils and platelets were 11.8±4.0 and 17.2±7.3 days, respectively.

Mean ± SD level of 25-OH-D was 17.5±14.0 ng/ml. VD deficiency in 51/71 (71.8%), insufficiency in 13/71 (18.3%), and sufficiency in 7/71 (9.9%) of all patients was diagnosed.

Logistic regressions showed no association between the pre-HSCT 25-OH-D levels and incidence of OM (P=0.69) or OM grade 3-4 (P=0.46). Spearman’s Rho test showed no significant correlations between the pre-HSCT 25-OH-D levels and duration of OM (P=0.54) or OM grade 3-4 (P=0.80). Cox-regression analysis showed no significant relations between the pre-HSCT levels of 25-OH-D and time to the beginning of OM grade 3-4 (P=0.52). No significant correlations were found between the pre-HSCT levels of 25-OH-D and engraftment time of neutrophils (P=0.46) or platelets (P=0.17) with Spearman’s Rho test.

Dividing patients in two groups based on the level of pre-HSCT VD (<20 vs ≥20 ng/ml), no significant differences in terms of OM and engraftment were found (Table 2). Logistic regressions confirmed no association between the pre-HSCT 25-OH-D <20 or ≥20 ng/ml and incidence of OM (P=0.74) or OM grade 3-4 (P=0.67).

Table 1. Baseline characteristics of patients (n = 71).

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, mean ± SD (y)</td>
<td>46.8 ± 13.4</td>
</tr>
<tr>
<td>Gender, n (%)</td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>48 (67.6)</td>
</tr>
<tr>
<td>Female</td>
<td>23 (32.4)</td>
</tr>
<tr>
<td>BMI, mean ± SD (kg/m²)</td>
<td>26.7 ± 4.3</td>
</tr>
<tr>
<td>Disease, n (%)</td>
<td></td>
</tr>
<tr>
<td>Multiple myeloma</td>
<td>36 (50.7)</td>
</tr>
<tr>
<td>Hodgkin’s lymphoma</td>
<td>17 (23.9)</td>
</tr>
<tr>
<td>Non-Hodgkin’s lymphoma</td>
<td>18 (25.4)</td>
</tr>
<tr>
<td>Disease status, n (%)</td>
<td></td>
</tr>
<tr>
<td>Complete remission 1</td>
<td>40 (56.3)</td>
</tr>
<tr>
<td>Complete remission 2</td>
<td>29 (40.8)</td>
</tr>
<tr>
<td>Complete remission 3</td>
<td>2 (2.8)</td>
</tr>
<tr>
<td>Conditioning regimen, n (%)</td>
<td></td>
</tr>
<tr>
<td>MLP</td>
<td>36 (50.7)</td>
</tr>
<tr>
<td>VP16 + CYT + CBP + MLP</td>
<td>35 (49.3)</td>
</tr>
</tbody>
</table>

Abbreviations: BMI: body mass index; CBP: carboplatin; CYT: cytarabine; MLP: melphalan; SD: standard deviation; VP16: etoposide.
Discussion

Humans attain VD mainly from exposure to sunlight and to a lesser extent from dietary sources. Changing views on optimal 25-OH-D levels complicate understanding the true prevalence of clinically significant VD deficiency. There is a broad agreement that VD levels <20 ng/ml indicate deficiency, and levels <30 ng/ml present insufficiency (19). Several risk factors following HSCT predispose patients to VD deficiency, such as low sun exposure, malnourishment, malabsorption, kidney or liver impairment, and reduction in sunlight hours during autumn and winter (21).

Despite its central roles as an important micronutrient in immunological processes, 71.8% (51/71) of our patients showed VD deficiency (<20 ng/ml) at the time of HSCT, in line with the analyses of others. In 32%, 33%, 37.3%, and 69% of children and adolescents in Campos et al. (9), Wallace et al. (11), Duncan et al. (7), and Hansson et al. (8), respectively, as well as 64% of adults in von Bahr et al. (10) studies <20 ng/ml levels of 25-OH-D were reported at the time of HSCT. In view of insufficiency (<30 ng/ml), the above statistics will even grow more to 90.1% (64/71) in our and 71% in Campos et al., 70% in Wallace et al., 80.6% in Duncan et al., and 91% in Hansson et al. reports. This topic has been mainly studied in the allogeneic HSCT, thus data in the autologous population are scarce.

Several studies have implicated a relation between low VD level (or receptor expression) and the development of an increased inflammatory response in the mucosa, e.g. in inflammatory bowel disease, by modulating T-cell receptor responses and cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23). Furthermore, VD deficiency has been concerned to play a role in tissue inflammatory processes, cytokine release (22,23).

Several studies have investigated the relationship between VD level and chemotherapy-induced toxicities (25-OH-D level and decreased VD uptake due to gastrointestinal mucositis might have been the cause. In Hamideh et al. (16) study on Fanconi anemia, higher pre-HSCT VD level was significantly associated with higher recovery rates of OM in pediatrics. However, in another study by Kitchen et al. (26), no relationship was detected between the 25-OH-D level and chemotherapy-induced toxicities in a mixed group of cancer patients.

We did not find any differences between the patients with optimal and suboptimal pre-HSCT VD regarding OM and engraftments. However, interpretation of the data was limited by small sample size, especially in the normal group.

We believe that bias was minimized by analyzing the serum samples at the end of the study and hence blinding the researchers. Nevertheless, we did not determine the inflammatory markers and 25-OH-D level post-HSCT. These factors could be taken into account in future studies to get insight into the possible mechanisms. Further studies with larger sample size are required to confirm the actual relationship between VD and OM.

In conclusion, the prevalence of VD deficiency was high among adult HSCT patients at the time of transplantation. However, no association was found between the pre-HSCT level of VD and OM or engraftment time of neutrophils and platelets.

Acknowledgments

We would like to thank the patients and BMT wards staff at Shariati Hospital.

References

1. Stöff P. Mucositis associated with stem cell transplantation: current status
and innovative approaches to management. Bone Marrow Transplant 2001;27(S2):S3–S11.


