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Background: Intracranial hemorrhage (ICH) is a devastating condition with a high mortality and 
morbidity rate. Neuroprotective agents protect surrounding brain tissue from the toxic effects of 
hematoma and can result in better outcomes. There is evidence demonstrating the neuroprotective 
benefits of melatonin in experimental animal models of ICH. Reduced melatonin levels have been 
reported in the intensive care unit (ICU) patients. The aim of this study was to evaluate baseline 
melatonin levels and pharmacokinetic profile of melatonin in ICH patients.

Methods: This was a randomized clinical trial in which 24 patients with non-traumatic ICH were 
divided into melatonin and control groups. Subjects in the melatonin group received 30 mg of 
melatonin for 5 days. Another group of 12 healthy volunteers also were recruited for the study. 
Baseline serum melatonin levels were measured for all groups. For the pharmacokinetic study, 
sampling intervals were 0.25, 0.5, 0.75, 1.5, 3, 6 and 10 hours after melatonin administration. 
Samples were analyzed using an HPLC system with fluorescence detection.

Results: Serum melatonin concentrations found to be decreased in all patients. Patients showed a 
significant increase in levels by the third day but still lower than healthy volunteers. By day 5, the 
melatonin group reache melatonin levels, statistically similar to healthy volunteers, but the control 
group didn’t reach normal levels even on the seventh day of study.

Conclusion: Our study suggests that monitoring melatonin levels and supplementing with exogenous 
melatonin can correct the reduced levels. Further studies focused on melatonin administration in 
ICH patients can be helpful in evaluating clinical outcomes in these patients.
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Introduction
Spontaneous, non-traumatic intracerebral hemorrhage 

(ICH) is a devastating form of stroke with an overall mortality 
of 40-50%. This condition also can cause significant disability 
and still remains a medical concern worldwide (1). In 
contrast to recent successes in prevention and acute treatment 
of ischemic stroke, such advances have not occurred in the 
management of ICH (2). Patients with good medical care have 
better survival chances which suggest excellent medical care 

have a direct impact on outcome (3). As recent evidence has 
implied that secondary contributors of ICH outcome include 
inflammation, oxidative stress, autophagy, and apoptosis; a 
rational but still unproven strategy in acute ICH management 
is that neuroprotective agents can protect surrounding brain 
tissue from toxic effects of hematoma (3,4).

Melatonin a neurohormone that is the main product of the 
pineal gland recently has gained additional attention because 
of its potent antioxidant activity, anti-inflammatory effects, 
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and anti-apoptotic properties (5,6). Due to these properties 
and evidence from animal studies melatonin may be useful 
in treating pathological events associated with hemorrhagic 
stroke (7). Several studies reported suppressed melatonin 
levels in critically ill patients, both in nocturnal peaks and 
baseline daytime serum concentrations (8). In particular, 
studies show that melatonin level is correlated with delirium 
(9), illness severity in septic disease in adults (10), sleep 
disturbance in traumatic brain injury (TBI) (11), and severe 
lack of sleep in critically ill patients (12). Impaired melatonin 
secretion also reported in critically ill and mechanically 
ventilated patients (13,14), TBI, trauma and medical patients 
treated at the intensive care unit (ICU)  (15).

The exact cause of these lower concentrations is not 
completely clear; the mechanism behind these disruptions 
may be as a result of either impaired melatonin production 
due to any alteration in pineal gland function (16), or 
consumption of melatonin as a neuroprotective endogenous 
molecule (15,17,18) because of the higher requirement of 
antioxidants in these patients (19-21).

Exogenous melatonin supplementation in critical illnesses 
to correct these decreased levels investigated in previous 
studies mainly evaluated melatonin effects on sleep (22,23). 
However, melatonin supplementation in these studies did 
not directly lead to better sleep (24). Effects of exogenous 
melatonin to increase total antioxidant capacity in critically 
ill patients investigated in one study proposed that even in the 
early phase of critical illness, enteral absorption is enough to 
reach pharmacological levels (25).

Previous studies on melatonin pharmacokinetic in high-
risk patients are limited (25-27), but the increased clinical 
relevance of melatonin in critical care necessitates further 
studies (8,28). Substituting melatonin acutely in critical 
illnesses may improve outcome in these patients (25).

The aim of this study was to investigate melatonin baseline 
levels in non- traumatic ICH patients, and measuring the 
pharmacokinetics parameters of exogenous melatonin and 
evaluating its adverse effects in these patients. 

Methods
This was a randomized, single blind, clinical trial in 
which 24 adult patients with non-traumatic ICH who 
were admitted to the general ICU within 24 hours of 
hemorrhage onset recruited in this study and equally 
divided into melatonin and control groups based on 
the simple randomization method. Also, 12 healthy 
volunteers participated in our study as controls for the 
normal baseline measures.
The sample size was calculated by use of the Open Epi 
Kelsey statistical software available at http://www.openepi.
com/SampleSize/SSCohort.htm with the following 
parameters and assumptions: a 95% significance level 
(2-sided), 80% power, and 50% exposure of the sample 
to melatonin, and an anticipated 90% lower melatonin 
concentration in unexposed patients.
Exclusion criteria were evidence of traumatic ICH, age 

under 18, hepatic failure and documented melatonin 
hypersensitivity. Demographic data were recorded and 
clinical scores including Acute Physiology And Chronic 
Health Evaluation (APACHE) II, Sequential Organ 
Failure Assessment (SOFA) and ICH score (29) were 
calculated for patients at admission.
All patients received standard treatments based on their 
clinical situations. Subjects in the melatonin group 
received 30 mg of melatonin (10 × 3 mg melatonin 
tablets, Nature Made, CA, USA). Tablets were crushed 
in mortar then were dissolved in 20 mL of water and 
administered at 8:00 a.m. through a nasogastric tube for 
5 days. 
As patients lacked decision-making capacity due to their 
consciousness state, legal surrogates of subjects were 
informed about purposes of the study and gave their 
written voluntary consent to take part in the experiment, 
which was approved by the Ethics Committee for Human 
Research at Tehran University of Medical Sciences (IR.
TUMS.VCR.REC.1396.2220).
For the measurement of baseline or trough serum 
melatonin levels, blood samples were collected from all 
subjects every other day in first 7 days of study (1st, 3rd, 
5th, and 7th) at 8:00 am, immediately before melatonin 
administration in melatonin group. To investigate 
pharmacokinetic parameters in melatonin group 
sampling intervals were 0.25, 0.5, 0.75, 1.5, 3, 6 and 10 
hours after drug administration on the first day.
To best of our knowledge, no study investigated 
pharmacokinetic of melatonin as a neuroprotective agent 
in humans after ICH. We estimated the human dose based 
on doses used in animal experiments by the following 
formula (30):
HED = animal dose in mg/kg × (animal weight in kg/
human weight in kg)0.33
Average oral bioavailability is low in humans, reported 
being around 15% across previous studies, while 
averaging 54% in rats (31).  
Ueda et al., administrated 15 mg/kg of oral melatonin 
in ICH model rat (32). We calculated the bioavailable 
fraction of this dose to estimate human oral dose. Finally, 
the calculated amount divided by a factor value of 10 to 
increase the safety of first human dose (33).
Blood samples were collected from central venous 
catheters which were placed in the internal jugular vein 
for patients. Blood samples treated with anticoagulant 
was centrifuged at 2000 g for 10 min at room temperature 
and 1 ml of plasma was removed and refrigerated at 
-70ºC until assayed. Quantitative determination of 
plasma melatonin concentrations was performed using a 
modified HPLC method to that described by Muñoz et 
al., (34).
The intra-assay CV from 5 different injections for each 
concentration was 14.21% (10 pg/mL), 10.79% (50 pg/
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ml), 11.60% (100 pg/ml), and 10.71% (200 pg/ml); and 
the inter-assay CV from was 13.81%, (10 pg/ml), 11.12% 
(50 pg/ml), 13.70% (100 pg/ml) and 9.86% (200 pg/ml). 
Recovery of melatonin from 5 different spiked plasma 
samples were 90.07 (50 pg/ml), 95.20% (100 pg/ml), and 
95.26% (250 pg/ml) and 94.36 (500 pg/ml).
Patients’ demographics, laboratory data, and measured 
scores were compared between the two groups using 
chi-squared tests, independent t-tests or Mann-
Whitney U tests as appropriate. For baseline melatonin 
interpretation, serum melatonin concentration data 
were log-transformed prior to analysis, as it was found 
to be well fitted by a lognormal distribution. Data for 
different days compared in each group and all groups 
compared with each other using one way ANOVA test. 
All statistical analysis performed by using Sigmaplot 
11.0 for Windows (Systat Software, Inc. San Jose, CA).

Pharmacokinetic analysis
A non-compartmental model used in this study. Peak 
concentration (Cmax) and time (Tmax) values were taken 

directly from observed concentrations. Pharmacokinetic 
profile for each patient plotted versus time and the elimination 
rate constant (Ke) was determined by log-linear regression 
of at least four data points which were in the elimination 
phase. Half-life calculated by dividing 0.693 by elimination 
constant. Method of residual was used to determine 
absorption constant (Ka). The linear trapezoidal method from 
zero to the last assayed concentration (10 hours after drug 
administration) used to determine AUC0-tlast, and total AUC 
calculated by adding C10hr/ke to AUC0-tlast. Dose/AUC 
total used for calculating the clearance. Apparent volume of 
distribution calculated by dividing clearance by Ke.

Results
Table 1 shows baseline characteristics in study groups. 
Patients in Melatonin group had higher baseline SOFA and 
APACHE II scores and lower Glasgow coma scale (GCS) 
but none of these differences were statistically significant. 
Generally, there was no statistically meaningful difference in 
any of reported factors (P>0.05).

Table 1. Patients’ baseline demographic and clinical data.

Characteristics Melatonin (n=12) Control (n=12) P-value

Age (yrs.) 56.41 52 0.449

Sex (M:F) 8:4 10:2 0.889

Body mass index (Kg/m2) 25.72 24.75 0.185

Creatinine (mg/dl) 1.1 1.09 0.521

Urea (mg/dl) 31.33 28.08 0.513

Hemoglubin (g/dl) 10.75 10.5 0.786

GCS 5.33 6 0.219

Intracranial hemorrhage score* 2.08 2 0.424

APACHE II 16 19.03 0.127

SOFA 6.33 7.91 0.068

Mechanical ventilation (Days) 11.5 13.5 0.625

Length of intensive care unit stay (Days) 9.5 11 0.603

Hospital mortality (%) 16% 25% 0.615

Mortality at 1 month (%) 41% 66% 0.437

Abbreviations: APACHE II: Acute Physiology and Chronic Health Evaluation II; SOFA: Sequential organ failure assessment, GCS: Glasgow coma scale
*ICH score was calculated by evaluation of ICH volume in cm3.

To assess the efficacy of acutely substituting melatonin in 
ICH patients, melatonin baseline levels compared in groups. 
In both groups, serum concentrations of melatonin found 
to be decreased comparing healthy volunteers’ levels. Both 
groups showed a significant increase in baseline levels by the 

third day of our study but still lower than healthy volunteer. 
By the day 5, melatonin group reached normal melatonin 
levels, statistically similar to healthy volunteers, but control 
group didn’t reach normal levels even on the seventh day of 
our study (Table 2 and Figure 1).
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Table 2. Serum melatonin levels.

Serum Conc. At 8:00 a.m.

Mean (Range)

ANOVA P-value Sig. Difference

1st
 D

ay

Melatonin 5.88 (4.18-7.48) Mel vs HV.  <0.001                                 Yes

Ctrl vs HV.  <0.001                                 Yes

Mel vs Ctrl.                 0.432                            No

Control 6.27 (4.67-8.37)

Healthy volunteer 18.95 (14.70 –25.48)

3rd
 D

ay

Melatonin 10 (6.61-14.99) Mel vs HV.  <0.001                            Yes

Ctrl vs HV.  <0.001                            Yes

Mel vs Ctrl.                 <0.001                            Yes

Control 7.80 (6.33-9.23)

Healthy volunteer 19.49 (11.34-23.09)

5th
 D

ay

Melatonin 14.66 (6.38-21.27) Mel vs HV.   0.068                                    No

Ctrl vs HV.  <0.001                            Yes

Mel vs Ctrl.                 <0.001                            Yes

Control 11.7 (8.52-14.72)

Healthy volunteer 19.45 (18.81-20.40)

7th
 D

ay

Melatonin 15.83 (7.55-20.88) Mel vs HV.   0.206                             No

Ctrl vs HV.  <0.001                            Yes

Mel vs Ctrl.                 <0.001                            Yes

Control 11.96 (6.32-16.10)

Healthy volunteer 18.52 (13.17-24.10)

ANOVA: Analysis of variance, Mel: melatonin, HV: Healthy volunteer

Figure. 1. Baseline melatonin concentration

Natural logarithm of baseline melatonin concentrations during first 7 days after hemorrhage.
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Pharmacokinetic analysis of plasma melatonin concentrations 
was undertaken in all patients.
Oral melatonin demonstrated first-order absorption and 
elimination kinetics. Mean t1/2 of oral melatonin was 53.89 
min. The mean Cmax and Tmax were 21846.41 pg/mL 
and 43.75 respectively. The mean ke was 0.772 hr-1. Mean 

clearance was 670.22 L/hr and the mean Vd/F was 939.92 L. 
The mean AUC0-∞ was 43613.77 (pg*ml)/hr in this study.
The pharmacokinetic parameters of oral melatonin are 
presented in Table 3, and the pharmacokinetic profile is 
demonstrated in Figure 2.

Table 3. Pharmacokinetic parameters of patients receiving 30 mg of melatonin.

Value Unit Mean Median Range

Cmax pg/mL 21846.41 19863.89 14955.09-33238.2

Tmax min 43.75 45 30-45

Ke 1/hr 0.772 0.766 0.736-0.836

Ka 1/hr 4.88 3.82 1/76-15.44

T1/2 min 53.89 54.23 49.74-56.50

Vd/F L 939.92 963.51 528.69-1247.86

Cl L/hr 670.22 691.12 402.36-1075.16

AUC0-tlast 43589 39590.94 32772.10-69505.02

AUCtlast-∞ 23.94 24.5 9.76-32.13

AUC0-∞ 43613.77 39615.04 32801.1-65937.15

Figure. 2. Pharmacokinetic profile of melatonin in ICH patients
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Discussion
 We investigated baseline melatonin levels in 24 non-
traumatic ICH patients and found decreased levels in all of 
them. This decrement was more prominent on the first day 
and melatonin levels gradually increased during first seven 
days of the study. Patients who received daily melatonin 
corrected these levels by the 5th day after hemorrhage onset. 
However, patients in control group didn’t reach normal levels 
even after the 7th day. Healthy volunteers participated in our 
study were younger than patients (average age was 33.2 and 
54.2 respectively), although melatonin plasma levels tend to 
decrease with age, this decrement in daytime baseline levels 
are not significant (35), and probably it did not impact our 
results.
While decreased melatonin levels were previously reported 
in critically ill and traumatic brain injury patients (8,15), our 
study is the first to report reduced levels of melatonin in non-
traumatic ICH patients. For developing effective strategies 
for acute ICH treatment, understanding the pathophysiology 
of this condition may be helpful. Similar abnormalities 
related to cerebral blood flow and metabolism reported in 
traumatic brain injury (TBI) and ICH patients. However, 
shared mechanisms in these conditions are still unexplained 
(36). Based on earlier studies, melatonin has beneficial effects 
in conditions that cerebral hemodynamic parameters like 
cerebral blood flow are compromised (37). Thus Melatonin 
supplementation may improve cerebral blood flow in both of 
these conditions.
Serum melatonin measurement methods are different among 
previous studies. Radio immune assay (RIA) and enzyme-
linked immunosorbent assay (ELISA) methods most 
commonly employed in them. In our study, we used HPLC 
with fluorescence detection to obtain higher sensitivity 
and specificity. Considering the low levels of melatonin in 
biological specimens, extraction from plasma is an important 
step. In our study, the average recovery rate was 93.72% 
which is highly satisfactory compared with the acceptable 
rate of higher than 70% reported in related studies (38).
Increasing clinical use of melatonin necessitates more 
information to select appropriate dosing regimen in 
different conditions. Physiological alterations in critical 
care patients lead to significant change in pharmacokinetic 
parameters of the drugs. Understanding these changes help 
in the optimal use of drugs in this patient population (39). 
To date pharmacokinetic parameters of melatonin mainly 
measured in healthy volunteers and results from these studies 
are inconsistent (27). Few studies evaluated melatonin 
pharmacokinetic parameters in critically ill patients. 
Mistraltti et al., reported adequate absorption of 3 mg of 
orally administrated melatonin in critically ill patients (8). 
Bellapart et al., investigated the pharmacokinetics of novel 
dosing regimen by administrating a total dose of 3.5 mg of 
oral melatonin at night that led to the supra-physiological and 
sustained serum levels throughout the day without affecting 
subject’s alertness (26). 
Bourne et al found improved sleep quality in ICU patients 

following 10 mg melatonin administration at nights. Their 
pharmacokinetic analysis suggested that this dose is too 
high and may negate some of the phase improving effects of 
nocturnal administration (28). 
Generally, critically ill patients demonstrated an accelerated 
Tmax and extended half-life (8,26,27). However, in the 
current study, we found Tmax (45 min) and T1/2  (54 min) 
more similar to healthy subjects reported in the past studies 
(27). This can be due to our exclusion criteria that patients 
with impaired renal or hepatic function did not enter into 
the study. Another possible cause of observed difference 
may be the different administration time, as our patients 
received melatonin at mornings (8:00 a.m.), similar to studies 
that investigated healthy subjects (40–46), in those studies 
on critically ill patients, subjects took melatonin at nights. 
Difference between exogenous melatonin metabolism in the 
day and night hours have not been investigated yet and our 
data was not sufficient to offer any conclusion.
As expected, we didn’t observe any side effect during 
treatment with melatonin. Supra-physiological concentrations 
after melatonin administration reported in previous studies 
(8,26,27). These higher levels may negate some of the 
circadian effects of melatonin when administrated at nights 
(26). 
This is the first study to evaluate the pharmacokinetic profile 
of high dose melatonin in ICH patients. Our findings indicate 
that 30 mg of melatonin which was calculated from animal 
studies as the first human dose is safe in this population with 
good absorption even in the acute phase after hemorrhage. 
However, our study suffers from the small population and 
lack of clinical evaluation of antioxidant effects of melatonin. 
Further studies are required to verify our findings. 
In conclusion, consistent with previous studies in ICU 
patients, our findings show reduced levels of melatonin 
in ICH patients. Exogenous melatonin supplementation 
is beneficial to correct melatonin plasma concentrations. 
Melatonin is a safe supplement and even in the acute phase 
of hemorrhagic stroke, melatonin absorption is adequate. 
Further studies focused on melatonin administration in ICH 
patients can be helpful in evaluating clinical outcomes in 
these patients.
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