Herbal Medicine as Neuroprotective Potential Agent in Human and Animal Models: A Historical Overview

  • Arash Abdolmaleki Mail 1Department of Engineering Sciences, Faculty of Advanced Technologies, University of Mohaghegh Ardabili, Namin, Iran. 2BioScience and Biotechnology Research center (BBRC), Sabalan University of Advanced Technologies, Namin, Iran.
  • Muhammad Akram 3Department of Eastern Medicine, Government College University, Faisalabad, Pakistan.
  • Muhammad Muddasar Saeed 3Department of Eastern Medicine, Government College University, Faisalabad, Pakistan.
  • Asadollah Asadi Department of Biology, Faculty of Science, University of Mohaghegh Ardabili, Ardabil, Iran.
  • Mahan Kajkolah 5Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
Keywords:
Neurodegenerative Diseases;, Herbal Medicine, Nervous System, Plants, Medicinal

Abstract

Neurodegenerative disorders could be a most important health issue within the 21st century. In the recent past; there has been a growing interest in medicinal plants. Chemical fruits and vegetables are said to decrease the possibility of many chief ailments, together with cardiovascular and cancer disorders as well as neurodegenerative ailments. Hence, who eat more fruits and vegetables may be less threaten for developing certain diseases caused by neurological dysfunction. The present review provides an overview of the about 14 most important plants used for neurological disorders and explores their neurological protection for the development of new pharmacological potential drugs. The data sources including the publications on Google Scholar, PubMed, and Science Direct. Publications searched with no particular time restriction in order to get a holistic and comprehensive view of the research done on this topic so far. Therefore, we present a systematic approach for herbal medicine as neuroprotective agent. From ancient time the herbal medicines are used to cure neurological symptoms. While the exact pharmacology of these herbs has not yet been set on, some of them have anti-inflammatory or antioxidant properties on different peripheral systems. The significant variety of medicinal plants makes it an essential source of healthy compounds compared to current therapeutic agents. In this review, the importance of phytochemicals for the function of neurological protection and other related disorders, in particular, the process mechanism and therapeutic prospective will be emphasize.

References

1. Lobo V, Patil A, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn Rev 2010;4(8):118-26.
2. Selvam A. Inventory of vegetable crude drug samples housed in botanical survey of India, Howrah. Pharmacognosy Reviews 2008;2(3):61-94.
3. Uriarte PI, Calvo M. Phytochemical study and evaluation of antioxidant, neuroprotective and acetylcholinesterase inhibitor activities of Galeopsis ladanum L. extracts. Pharmacognosy Magazine 2009;5(20):287-90.
4. Ghayour MB, Abdolmaleki A, Behnam-Rassouli M, Mahdavi-Shahri N, Moghimi A. Synergistic Effects of Acetyl-l-Carnitine and Adipose-Derived Stromal Cells on Improving Regenerative Capacity of Acellular Nerve Allograft in Sciatic Nerve Defect. J Pharmacol Exp Ther 2019;368(3):490-502.
5. Ghayour MB, Abdolmaleki A, Rassouli MB. Neuroprotective effect of Lovastatin on motor deficit induced by sciatic nerve crush in the rat. Eur J Pharmacol 2017;812:121-7.
6. Abdolmaleki A, Fereidoni M, Asgari A. Analgesic and Anti-Inflammatory Effects of Hydroalcoholic Extract of Salvia multicaulis on Male Rats. Sciences 2015;21(2):121-8.
7. Kumar V. Potential medicinal plants for CNS disorders: an overview. Phytother Res 2006;20(12):1023-35.
8. Abdolmaleki A, Moghimi A, Ghayour MB, Rassouli MB. Evaluation of neuroprotective, anticonvulsant, sedative and anxiolytic activity of citicoline in rats. Eur J Pharmacol 2016;789:275-9.
9. Houghton P, Raman A. Laboratory handbook for the fractionation of natural extracts. Springer Science & Business Media; 2012.
10. Capasso R, Izzo AA, Pinto L, Bifulco T, Vitobello C, Mascolo N. Phytotherapy and quality of herbal medicines. Fitoterapia 2000;71(Suppl 1):S58-S65.
11. Boskabady MH, Ghorani V, Alavinezhad A. Saffron, its main derivatives, and their effects on the respiratory systemSeries. In: Koocheki A and Khajeh-Hosseini M, editors. Saffron. Elsevier: Woodhead Publishing; 2020. p. 461-9.
12. Bathaie SZ, Mousavi SZ. New applications and mechanisms of action of saffron and its important ingredients. Crit Rev Food Sci Nutr 2010;50(8):761-86.
13. Khazdair MR, Boskabady MH, Hosseini M, Rezaee R, Tsatsakis AM. The effects of Crocus sativus (saffron) and its constituents on nervous system: A review. Avicenna J Phytomed 2015;5(5):376-91.
14. Mokhtari-Zaer A, Khazdair MR, Boskabady MH. Smooth muscle relaxant activity of Crocus sativus (saffron) and its constituents: possible mechanisms. Avicenna J Phytomed 2015;5(5): 365-73.
15. Khazdair MR. The protective effects of Nigella sativa and its constituents on induced neurotoxicity. J Toxicol 2015;2015:841823.
16. Karimi E, Oskoueian E, Hendra R, Jaafar HZ. Evaluation of Crocus sativus L. stigma phenolic and flavonoid compounds and its antioxidant activity. Molecules 2010;15(9):6244-6256.
17. Tamaddonfard E, Farshid AA, Ahmadian E, Hamidhoseyni A. Crocin enhanced functional recovery after sciatic nerve crush injury in rats. Iran J Basic Med Sci 2013;16(1):83-90.
18. Saleem S, Ahmad M, Ahmad AS, et al. Effect of saffron (Crocus sativus) on neurobehavioral and neurochemical changes in cerebral ischemia in rats. J Med Food 2006;9(2):246-53.
19. Shati AA, Elsaid FG, Hafez EE. Biochemical and molecular aspects of aluminium chloride-induced neurotoxicity in mice and the protective role of Crocus sativus L. extraction and honey syrup. Neuroscience 2011;175:66-74.
20. Hajhashemi V, Ghannadi A, Jafarabadi H. Black cumin seed essential oil, as a potent analgesic and antiinflammatory drug. Phytother Res 2004;18(3):195-199.
21. El-Tahir KE, Bakeet DM. The black seed Nigella sativa Linnaeus-A mine for multi cures: a plea for urgent clinical evaluation of its volatile oil. Journal of Taibah University Medical Sciences 2006;1(1):1-19.
22. Kacem R, Meraihi Z. Effects of essential oil extracted from Nigella sativa (L.) seeds and its main components on human neutrophil elastase activity. Yakugaku Zasshi 2006;126(4):301-305.
23. Venkatachallam SKT, Pattekhan H, Divakar S, Kadimi US. Chemical composition of Nigella sativa L. seed extracts obtained by supercritical carbon dioxide. J Food Sci Technol 2010;47(6):598-605.
24. Burits M, Bucar F. Antioxidant activity of Nigella sativa essential oil. Phytother Res 2000;14(5):323-8.
25. Azzubaidi MS, Saxena AK, Talib NA, Ahmed QU, Dogarai BB. Protective effect of treatment with black cumin oil on spatial cognitive functions of rats that suffered global cerebrovascular hypoperfusion. Acta Neurobiol Exp (Wars) 2012;72(2):154-65.
26. Hosseini M, Mohammadpour T, Karami R, Rajaei Z, Sadeghnia HR, Soukhtanloo M. Effects of the hydro-alcoholic extract of Nigella sativa on scopolamine-induced spatial memory impairment in rats and its possible mechanism. Chin J Integr Med 2015;21(6):438-44.
27. Devi S, Gupta E, Sahu M, Mishra P. Proven Health Benefits and Uses of Coriander (Coriandrum sativum L.)Series. In: Mishra N, editor. Ethnopharmacological Investigation of Indian Spices. Kanpur: GI Global; 2020. p. 197-204.
28. Trifan A, Bostănaru AC, Luca SV, et al. Antifungal potential of pimpinella anisum, carum carvi and coriandrum sativum extracts. A comparative study with focus on the phenolic composition. Farmacia 2020;68(1):22-27.
29. Sahib NG, Anwar F, Gilani AH, Hamid AA, Saari N, Alkharfy KM. Coriander (Coriandrum sativum L.): a potential source of high-value components for functional foods and nutraceuticals-a review. Phytother Res 2013;27(10):1439‐56.
30. Petramfar P, Zarshenas MM, Moein M, Mohagheghzadeh A. Management of insomnia in traditional Persian medicine. Forsch Komplementmed 2014;21(2):119‐125.
31. Hosseinzadeh H, Madanifard M. Anticonvulsant effects of Coriandrum sativum L. seed extracts in mice. Archives of Iranian Medicine 2000;3(4):1-4.
32. Iranshahy M, Iranshahi M. Traditional uses, phytochemistry and pharmacology of asafoetida (Ferula assa-foetida oleo-gum-resin)-a review. J Ethnopharmacol 2011;134(1):1-10.
33. Khajeh M, Yamini Y, Bahramifar N, Sefidkon F, Pirmoradei MR. Comparison of essential oils compositions of Ferula assa-foetida obtained by supercritical carbon dioxide extraction and hydrodistillation methods. Food chemistry 2005;91(4):639-44.
34. Zia-Ul-Haq M, Shahid S A, Ahmad S, Qayum M, Khan I. Antioxidant potential of various parts of Ferula assafoetida L. J Med Plant Res 2012;6(16):3254-8.
35. Lee CL, Chiang LC, Cheng LH, et al. Influenza A (H1N1) antiviral and cytotoxic agents from Ferula assa-foetida. J Nat Prod 2009;72(9):1568-1572.
36. Bagheri SM, Rezvani ME, Vahidi AR, Esmaili M. Anticonvulsant effect of Ferula assa-foetida oleo gum resin on chemical and amygdala-kindled rats. N Am J Med Sci 2014;6(8):408-12.
37. Moghadam FH, Dehghan M, Zarepur E, et al. Oleo gum resin of Ferula assa-foetida L. ameliorates peripheral neuropathy in mice. J Ethnopharmacol 2014;154(1):183-9.
38. Zarmouh NO, Messeha SS, Elshami FM, Soliman KF. Natural products screening for the identification of selective monoamine oxidase-B inhibitors. European J Med Plants 2016;15(1):14802.
39. Vijayalakshmi P, Adiga S, Bhat P, Chaturvedi A, Bairy K, Kamath S. Evaluation of the effect of Ferula asafoetida Linn. gum extract on learning and memory in Wistar rats. Indian J Pharmacol 2012;44(1):82-7.
40. Kusindarta DL, Wihadmadyatami H, Haryanto A. Ocimum sanctum Linn. stimulate the expression of choline acetyltransferase on the human cerebral microvascular endothelial cells. Vet World 2016;9(12):1348-54.
41. Venuprasad M, Kumar KH, Khanum F. Neuroprotective effects of hydroalcoholic extract of Ocimum sanctum against H 2 O 2 induced neuronal cell damage in SH-SY5Y cells via its antioxidative defence mechanism. Neurochem Res 2013;38(10):2190-200.
42. Pan HY, Qu Y, Zhang JK, Kang TG, Dou DQ. Antioxidant activity of ginseng cultivated under mountainous forest with different growing years. J Ginseng Res 2013;37(3):355-60.
43. Kshirsagar AD, Mohite R, Aggrawal AS, Suralkar UR. Hepatoprotective medicinal plants of Ayurveda-A review. Asian Journal of Pharmaceutical and Clinical Research 2011;4(3):1-8.
44. Chen XC, Zhu YG, Zhu LA, et al. Ginsenoside Rg1 attenuates dopamine-induced apoptosis in PC12 cells by suppressing oxidative stress. Eur J Pharmacol 2003;473(1):1-7.
45. Teltumbde A, Wahurwagh A, Lonare M, Nesari MT. Effect of Yashtimadhu (Glycyrrhiza Glabra) on intelligence and memory function in male adolescents. Scholars Journal of Applied Medical Sciences 2013;1(2):90-95.
46. Yu XQ, Xue CC, Zhou ZW, et al. In vitro and in vivo neuroprotective effect and mechanisms of glabridin, a major active isoflavan from Glycyrrhiza glabra (licorice). Life Sci 2008;82(1-2):68-78.
47. Muralidharan P, Balamurugan G, Babu V. Cerebroprotective effect of Glycyrrhiza glabra Linn. root extract. Bangladesh Journal of Pharmacology 2009;4(1):60-64.
48. Geng Y, Li C, Liu J, et al. Beta-asarone improves cognitive function by suppressing neuronal apoptosis in the beta-amyloid hippocampus injection rats. Biol Pharm Bull 2010;33(5):836-43.
49. Patel V, Jivani N, Patel S. Medicinal plants with potential nootropic activity: a review. Research Journal of Pharmaceutical, Biological and Chemical Sciences 2014;5(1):1-11.
50. Paterna J-C, Leng A, Weber E, Feldon J, Büeler H. DJ-1 and Parkin modulate dopamine-dependent behavior and inhibit MPTP-induced nigral dopamine neuron loss in mice. Mol Ther 2007;15(4):698-704.
51. Bayan L, Koulivand PH, Gorji A. Garlic: a review of potential therapeutic effects. Avicenna J Phytomed 2014;4(1):1-14.
52. Chauhan NB. Effect of aged garlic extract on APP processing and tau phosphorylation in Alzheimer's transgenic model Tg2576. J Ethnopharmacol 2006;108(3):385-94.
53. Pérez-Torres I, Torres-Narváez J, Pedraza-Chaverri J, et al. Effect of the aged garlic extract on cardiovascular function in metabolic syndrome rats. Molecules 2016;21(11):1425.
54. Tatara MR, Sliwa E, Dudek K, Mosiewicz J, Studzinski T. Effect of aged garlic extract and allicin administration to sows during pregnancy and lactation on body weight gain and gastrointestinal tract development of piglets. Bulletin- Veterinary Institute in Pulawy 2005;49(3):349-355.
55. Mathew BC, Biju RS. Neuroprotective effects of garlic a review. Libyan J Med 2008;3(1):23-33.
56. Medina-Campos ON, Barrera D, Segoviano-Murillo S, et al. S-allylcysteine scavenges singlet oxygen and hypochlorous acid and protects LLC-PK1 cells of potassium dichromate-induced toxicity. Food and Chemical Toxicology 2007;45(10):2030-39.
57. Phani Kumar G, Anilakumar KR, Naveen S. Phytochemicals Having Neuroprotective Properties from Dietary Sources and Medicinal Herbs. Pharmacognosy Journal 2015;7(1).
58. Araujo C, Leon L. Biological activities of Curcuma longa L. Mem Inst Oswaldo Cruz 2001;96(5):723-8.
59. Akram M, Shahab-Uddin AA, Usmanghani K, Hannan A, Mohiuddin E, Asif M. Curcuma longa and curcumin: a review article. Rom J Biol Plant Biol 2010;55(2):65-70.
60. Kulkarni SK, Akula KK, Deshpande J. Evaluation of antidepressant-like activity of novel water-soluble curcumin formulations and St. John's wort in behavioral paradigms of despair. Pharmacology 2012;89(1-2):83-90.
61. Khazdair MR, Mohebbati R, Karimi S, Abbasnezhad A, Haghshenas M. The protective effects of Curcuma longa extract on oxidative stress markers in the liver induced by Adriamycin in rat. Physiology and Pharmacology 2016;20(1):31-37.
62. Mohebbati R, Shafei MN, Soukhtanloo M, et al. Adriamycin-induced oxidative stress is prevented by mixed hydro-alcoholic extract of Nigella sativa and Curcuma longa in rat kidney. Avicenna J Phytomed 2016;6(1):86-94.
63. Khatri DK, Juvekar AR. Neuroprotective effect of curcumin as evinced by abrogation of rotenone-induced motor deficits, oxidative and mitochondrial dysfunctions in mouse model of Parkinson's disease. Pharmacol Biochem Behav 2016;150-151:39-47.
64. Liu L, Zhang W, Wang L, et al. Curcumin prevents cerebral ischemia reperfusion injury via increase of mitochondrial biogenesis. Neurochem Res 2014;39(7):1322-31.
65. Tu XK, Yang WZ, Chen JP, et al. Curcumin inhibits TLR2/4-NF-κB signaling pathway and attenuates brain damage in permanent focal cerebral ischemia in rats. Inflammation 2014;37(5):1544-51.
66. Yang C, Zhang X, Fan H, Liu Y. Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res 2009;1282:133-41.
67. Chandrasekaran K, Mehrabian Z, Spinnewyn B, Drieu K, Fiskum G. Neuroprotective effects of bilobalide, a component of the Ginkgo biloba extract (EGb 761), in gerbil global brain ischemia. Brain Res 2001;922(2):282-92.
68. Anand T, Kumar G P, Ilaiyaraja N, Khanum F, Bawa A. Effect of asiaticoside rich extract from Centella asiatica (L.) Urb. on physical fatigue induced by weight-loaded forced swim test. Asian Journal of Animal and Veterinary Advances 2012;7(9):832-41.
69. Sbrini G, Brivio P, Fumagalli M, et al. Centella asiatica L. Phytosome Improves Cognitive Performance by Promoting Bdnf Expression in Rat Prefrontal Cortex. Nutrients 2020;12(2):355.
70. Imanshahidi M, Hosseinzadeh H. The pharmacological effects of Salvia species on the central nervous system. Phytother Res 2006;20(6):427-37.
71. Eidi M, Eidi A, Bahar M. Effects of Salvia officinalis L.(sage) leaves on memory retention and its interaction with the cholinergic system in rats. Nutrition 2006;22(3):321-26.
72. Sallam A, Mira A, Ashour A, Shimizu K. Acetylcholine esterase inhibitors and melanin synthesis inhibitors from Salvia officinalis. Phytomedicine 2016;23(10):1005-11.
73. Tildesley N, Kennedy D, Perry E, Ballard C, Wesnes K, Scholey A. Positive modulation of mood and cognitive performance following administration of acute doses of Salvia lavandulaefolia essential oil to healthy young volunteers. Physiol Behav 2005;83(5):699-709.
74. Akhondzadeh S, Noroozian M, Mohammadi M, Ohadinia S, Jamshidi A, Khani M. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer's disease: a double blind, randomized and placebo-controlled trial. J Clin Pharm Ther 2003;28(1):53-9.
75. Roy S, Awasthi H. Herbal medicines as neuroprotective agent: A mechanistic approach. International Journal of Pharmacy and Pharmaceutical Sciences 2017; 9(11):1-7.
76. Gohil KJ, Patel JA, Gajjar AK. Pharmacological review on Centella asiatica: a potential herbal cure-all. Indian J Pharm Sci 2010;72(5):546-56.
77. Chen CL, Tsai WH, Chen CJ, Pan TM. Centella asiatica extract protects against amyloid β1–40-induced neurotoxicity in neuronal cells by activating the antioxidative defence system. J Tradit Complement Med 2016;6(4):362-69.
78. Soumyanath A, Zhong YP, Yu X, et al. Centella asiatica accelerates nerve regeneration upon oral administration and contains multiple active fractions increasing neurite elongation in-vitro. J Pharm Pharmaco 2005;57(9):1221-29.
79. Guo JS, Cheng CL, Koo MW L. Inhibitory effects of Centella asiatica water extract and asiaticoside on inducible nitric oxide synthase during gastric ulcer healing in rats. Planta Med 2004;70(12):1150-54.
80. Kumar A, Seghal N, Padi SV, Naidu PS. Differential effects of cyclooxygenase inhibitors on intracerebroventricular colchicine-induced dysfunction and oxidative stress in rats. Eur J Pharmacol 2006;551(1-3):58-66.
Published
2020-06-26
How to Cite
1.
Abdolmaleki A, Akram M, Muddasar Saeed M, Asadi A, Kajkolah M. Herbal Medicine as Neuroprotective Potential Agent in Human and Animal Models: A Historical Overview. J Pharm Care. 8(2):75-82.
Section
Review Article(s)