Review Article

Survey on the Oxidative Stress Status and the Role of Antioxidants in Acute Myeloid Leukemia Therapy

Abstract

Acute myeloid leukemia (AML) is a heterogeneous disease with multiple mutations in hematopoietic stem cells characterized by abnormality increases in immature or dysfunctional white blood cells. The precise mechanisms of AML development have not been clear but there are many factors increase to developing leukemia such as familial history of leukemia, elderly, life style, genetics and some chronic disease like diabetic. Multiple mutilations happen in the hematopoietic stem cells, acquire some form of genetic instability lead to improve expression of some protein kinase and transduction protein following that increase ROS formation, which is associated with increased DNA damage. Nowadays, the use antioxidant drugs are growingly accepted in universal due to their safety and efficiency to diminish the adverse effects of free radicals and treatment of the many diseases such as cancer. In this article, we discussed the correlation between acute myeloid leukemia incidence and the oxidant biomarkers (oxidative stress), and more focusing on the great role of antioxidant biomarkers, whether the non-enzymatic or the enzymatic in the protection of the cells against harmful effects of free radicals in the acute myeloid leukemia patients.

1. Farasani A. Genetic variants of glutathione S-transferase and the risk of acute myeloid leukemia in a Saudi population. Saudi J Biol Sci. 2019;26(7):1525–30.
2. Tahir NT, Ph D. Hematological and Analytical Study among Iraqi Patients with Acute Myeloid Leukemia. 2019;4421(7):381–6.
3. Song X, Peng Y, Wang X, et al. Incidence, Survival, and Risk Factors for Adults with Acute Myeloid Leukemia Not Otherwise Specified and Acute Myeloid Leukemia with Recurrent Genetic Abnormalities: Analysis of the Surveillance, Epidemiology, and End Results (SEER) Database, 2001-2013. Acta Haematol. 2018;139(2):115–27.
4. Acheampong DO, Adokoh CK, Asante DB, Asiamah EA, Barnie PA, Bonsu DO, Kyei F. Immunotherapy for acute myeloid leukemia (AML): a potent alternative therapy. Biomed Pharmacother. 2018;97:225-32.
5. Martínez-Cuadrón D, Serrano J, Mariz J,et al. Characteristics and Outcomes of Adult Patients in the PETHEMA Registry with Relapsed or Refractory FLT3-ITD Mutation-Positive Acute Myeloid Leukemia. Cancers. 2022;14(11):2817
6. Shallis RM, Wang R, Davidoff A, Ma X, Zeidan AM. Epidemiology of acute myeloid leukemia: Recent progress and enduring challenges. Blood Rev. 2019;36:70–87.
7. Ben-Batalla I, Vargas-Delgado ME, Meier L, Loges S. Sexual dimorphism in solid and hematological malignancies. Semin Immunopathol. 2019;41(2):251–63.
8. Levy D, Reichert CO, Bydlowski SP. Paraoxonases activities and polymorphisms in elderly and old-age diseases: An overview. Antioxidants. 2019;8(5):1–24.
9. Deschler B, Lübbert M. Acute myeloid leukemia: Epidemiology and etiology. Cancer. 2006;107(9):2099–107.
10. Hiddemann W. Handbook of Acute Leukemia. Hiddemann W, editor. Handbook of Acute Leukemia. Cham: Springer International Publishing; 2016.
11. Hussein S, Mohamed D, Hafez R. Risk factors of hematological malignancies in Upper Egypt: a case–control study. Egypt J Intern Med. 2019;31(2):171.
12. Azzwali AAA, Azab AE. Leukaemia : insights into aetiology, incidence, classification , and treatment. 2019;4421(5):228–34.
13. Yan P, Wang Y, Fu T, Liu Y, Zhang ZJ. The association between type 1 and 2 diabetes mellitus and the risk of leukemia: a systematic review and meta-analysis of 18 cohort studies. Endocr J. 2020;(185):1–9.
14. Udensi UK, Tchounwou PB. Dual effect of oxidative stress on leukemia cancer induction and treatment. J Exp Clin Cancer Res. 2014;33(1):1–15.
15. Shi LH, Ma P, Liu JS, et al. Current views of chromosomal abnormalities in pediatric acute myeloid leukemia (AML). Eur Rev Med Pharmacol Sci. 2017;21(4):25–30.
16. Sillar JR, Germon ZP, De Iuliis GN, Dun MD. The role of reactive oxygen species in acute myeloid leukaemia. Int J Mol Sci. 2019;20(23):1–20.
17. Kaweme NM, Zhou S, Changwe GJ, Zhou F. The significant role of redox system in myeloid leukemia: from pathogenesis to therapeutic applications. Biomark Res. 2020;8(1):1–12.
18. Chen YF, Liu H, Luo XJ, et al. The roles of reactive oxygen species (ROS) and autophagy in the survival and death of leukemia cells. Crit Rev Oncol Hematol. 2017;112:21–30.
19. Valko M, Rhodes CJ, Moncol J, Izakovic MM, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006;160(1):1-40.
20. Babu VA, Gowri R. Evaluation of antioxidant activity of Beta vulgaris root extract in rats. Asian Journal of Chemistry. 2010;22(5):3385-9.
21. Law BMH, Waye MMY, So WKW, Chair SY. Hypotheses on the Potential of Rice Bran Intake to Prevent Gastrointestinal Cancer through the Modulation of Oxidative Stress. Int J Mol Sci. 2017;18(7):1352.
22. Hughes DA. Dietary antioxidants and human immune function. Nutr Bull. 2000;25(1):35
23. Hajihosseini S, Setorki M. The antioxidant activity of Beta vulgaris leaf extract in improving scopolamine-induced spatial memory disorders in rats. Avicenna J Phytomed. 2017;7(5):417-425.
24. Alubadi N, Alnaama N. Profile study of some oxidant and antioxidant levels in leukemic patients. The Medical Journal of Basrah University.2012;30(2):115- 121.
25. A OJ, Agnes A, Oluyemi A, O AE, Sheu R, O AG. Antioxidant levels of acute leukaemia patients in Nigeria. Sierra Leone J Biomed Res. 2011;3(3):133–7.
26. Rasool M, Farooq S, Malik A, et al. Assessment of circulating biochemical markers and antioxidative status in acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) patients. Saudi J Biol Sci. 2015;22(1):106–11.
27 Romo-González M, Moreno-Paz S, García-Hernández V, Sánchez-Guijo F, Hernández-Hernández Á. Inhibition of xanthine oxidoreductase enhances the potential of tyrosine kinase inhibitors against chronic myeloid leukemia. Antioxidants. 2020;9(1):74.
28 Ighodaro OM, Akinloye OA. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria J Med. 2018;54(4):287–93.
29. Kato M, Minakami H, Kuroiwa M, et al. Superoxide radical generation and Mn- and Cu-Zn superoxide dismutases activities in human leukemic cells. Hematol Oncol. 2003;21(1):11–6.
30. Moore IM, Koerner KM, Gundy PM, et al. Changes in Oxidant Defense, Apoptosis, and Cognitive Abilities During Treatment for Childhood Leukemia. Biol Res Nurs. 2018;20(4):393–402.
31. Er TK, Tsai SM, Wu SH, et al. Antioxidant status and superoxide anion radical generation in acute myeloid leukemia. Clin Biochem. 2007;40(13–14):1015–9.
32. Wei J, Xie Q, Liu X, et al. Identification the prognostic value of glutathione peroxidases expression levels in acute myeloid leukemia. Ann Transl Med. 2020;8(11):678–678.
33. Assi SH, Al_Husain RS. Study of Protective effect of Glutathione Peroxidase ( GSH-Px), Vitamin E and Selenium on Iraqi children with Leukemia. J Biotechnol Res Cent. 2014;8(4):15–21.
34. Çebi A, Akgun E, Esen R, Demir H, Çifci A. The activities of serum paraoxonase and arylesterase and lipid profile in acute myeloid leukemia: Preliminary results. Eur Rev Med Pharmacol Sci. 2015;19(23):4590–4.
35. Takahashi S. Positive and negative regulators of the metallothionein gene (Review). Mol Med Rep. 2015;12(1):795–9.
36. Tao YF, Xu LX, Lu J, et al. Metallothionein III (MT3) is a putative tumor suppressor gene that is frequently inactivated in pediatric acute myeloid leukemia by promoter hypermethylation. J Transl Med. 2014;12(1):1–14.
37. Krizkova S, Kepinska M, Emri G, et al. An insight into the complex roles of metallothioneins in malignant diseases with emphasis on (sub)isoforms/isoforms and epigenetics phenomena. Pharmacol Ther. 2018;183:90–117.
38. Mehdi WA, Yusof F, Mehde AA, Zainulabdeen JA, Raus RA, Abdulbari AS. Effects of acute lymphoblastic leukemia on ceruloplasmin oxidase, copper and several markers of oxidative damage, in children. Asian Pacific J Cancer Prev. 2015;16(13):5205–10.
39. Li R, Guo C, Li Y, Liang X, Su M. Functional benefit and molecular mechanism of vitamin C against perfluorooctanesulfonate-associated leukemia. Chemosphere. 2021;263.
40. Park S. The effects of high concentrations of vitamin C on cancer cells. Nutrients. 2013;5(9):3496-505.
41. Valadbeigi S, Javadian S, Ebrahimi-Rad M, Khatami S, Saghiri R. Assessment of trace elements in serum of acute lymphoblastic and myeloid leukemia patients. Exp Oncol. 2019;41(1):69–71.
42. Demir C, Demir H, Esen R, Sehitogullari A, Atmaca M, Alay M. Altered serum levels of elements in acute leukemia cases in Turkey. Asian Pacific J Cancer Prev. 2011;12(12):3471–4.
43. Dayer D, Asadi ZT, Samie M, Reisiyan N, Kalantarian G, Vakhshiteh F. Evaluation of serum copper levels in patients with leukemia and lymphoma. DAMA International. 2015;4:266-70.
44. Asfour IA, El-Kholy NM, Ayoub MS, Ahmed MB, Bakarman AA. Selenium and glutathione peroxidase status in adult Egyptian patients with acute myeloid leukemia. Biol Trace Elem Res. 2009;132(1–3):85–92.
45. Zhang S, Kang L, Dai X, et al. Manganese induces tumor cell ferroptosis through type-I IFN dependent inhibition of mitochondrial dihydroorotate dehydrogenase. Free Radic Biol Med. 2022;193:202-12.
46. Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell. 2012;149(5):1060-7.
Files
IssueVol 11, No 3 (Summer 2023) QRcode
SectionReview Article(s)
Keywords
Acute Myeloid Leukemia; Oxidative Stress; Antioxidant

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
How to Cite
1.
Abdulsattar Mosa A, Saleh Ali G, Selamoglu Z. Survey on the Oxidative Stress Status and the Role of Antioxidants in Acute Myeloid Leukemia Therapy. J Pharm Care. 2023;11(3):165-172.